

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

nuSQuIDS

A user manual can be generated by: make docs;

Prerequisites

The following packages are required to build and use the client library, and
can probably be had from your favorite package manager:

	gsl (>= 1.15): http://www.gnu.org/software/gsl/

	hdf5 with c bindings: http://www.hdfgroup.org/HDF5/

	C++ compiler with C++11 support

	SQUIDS (>= 1.2): https://github.com/jsalvado/SQuIDS/

PythonToolBox

Run online jupyter notebook example
[image: _images/badge_logo.svg]Binder [https://mybinder.org/v2/gh/arguelles/nuSQuIDS/master?filepath=resources%2Fpython%2Fexample%2FnuSQUIDS-DEMO.ipynb]

Additionally for compiling and using the python bindings:

Required:

	boost (>= 1.63): http://www.boost.org/

	numpy: http://www.numpy.org/

	matplotlib: http://matplotlib.org/

Recommended:

	ipython: http://ipython.org/

Documentation

The LaTeX and pdf files are included in nuSQuIDS/doc/ folder.

Configuration

The path for the GSL libraries can be specified by running:

./configure --with-gsl-incdir=GSL_include_path --with-gsl-libdir-=GSL_library_path

or, assuming a standard installation into ‘include’ and ‘lib’ subdirectories within a common prefix:

./configure --with-gsl=GSL_prefix

The path for the HDF5 libraries can be specified by running:

./configure --with-hdf5-incdir=HDF5_include_path --with-hdf5-libdir=HDF5_library_path

or more simply

./configure --with-hdf5=HDF5_prefix

Finally, the path for SQuIDS can be specified by:

./configure --with-squids-incdir=SQuIDS_include_path --with-squids-libdir=SQuIDS_library_path

or commonly just

./configure --with-squids=SQuIDS_prefix

To compile the python interface it is additionally necessary to pass the
--with-python-bindings option to configure. Also, the boost python library,
a working python installation, and numpy must be available. The location of the
boost library can be specified using:

./configure --with-boost-incdir=boost_include_path --with-boost-libdir-=boost_library_path

or in simple cases

./configure --with-boost=boost_prefix

The python executable (which will also be used to locate numpy) can be specified with:

./configure --python-bin=PYTHON_EXECUTABLE

Once configuration is complete the library can be compiled by running:

make

Unit tests to verify correct behavior can be run using:

make test

A set of example programs demonstrating usage and functionality
can be compiled with the command:

make examples

The resulting example executables can then be found in the various
subdirectories of examples

Finally the library can be installed using:

make install

By default this will attempt to install the library within /usr/local;
this can be changed by using the –prefix option when running configure:

./configure --prefix=$HOME

Compiling the Python Interface

If you have activated the python interface by doing --with-python-bindings then proceed according to this instructions
Even when configured the python interface is not built with the main library.
To compile it do the following:

cd resources/python/src/
make

After successful compilation the bindings will be stored in resources/python/bindings/.
To make them available from within python, modify your PYTHONPATH:

export PYTHONPATH=$(PATH_TO_nuSQUIDS)/resources/python/bindings/:$PYTHONPATH

Template for Building Simple C++ Programs

Since nuSQuIDS is a library, to do calculations with it one must generally write a program linked against it.
One option is to use the python bindings, which allow use of the library either through a python script, or an interactive python interpreter session.
However, not all features of the library can be efficiently exposed to python, and the python interface has overheads.
It is often useful to program against the library’s native C++ API, but preparing a C++ program for compilation is a task many people find tedious, so this template is provided for greater convenience.

Structure of the Template

The template itself is the single Makefile in this directory.
It has two parts:
First, a set of variables with descriptions which the user should set to control what will be built and how.
Second, a set of variables and rules which form the implementation for compiling the user’s program and ensuring that it is suitably linked with nuSQuIDS.
The template rules assume that the nuSQuIDS library has been compiled and installed so that the included pkg-config definition is available.
Note that, depending on your system and where you chose to install the library, this may require adding the install location to your PKG_CONFIG_PATH environment variable.
The two halves of the makefile are separated by a comment which advises against modifying the second half, as doing so should not be necessary in most circumstances.
The first half contains comments to guide usage, while the second half is only minimally commented.

Example Use

Suppose that we want to write a program which will use nuSQuIDS to calculate the oscillation probability for a unit beam of muon neutrinos of a given energy through the Earth. One might write it as follows:

#include <iostream>
#include "nuSQuIDS/nuSQuIDS.h"
int main(int argc, char* argv[]){
	using namespace nusquids;
	if(argc<2){
		std::cout << "Usage: earth_osc energy" << std::endl;
		return 0;
	}
	nuSQUIDS nus(3,neutrino);
	squids::Const units;
	nus.Set_E(std::stod(argv[1])*units.GeV);
	nus.Set_Body(std::make_shared<EarthAtm>());
	nus.Set_Track(std::make_shared<EarthAtm::Track>(acos(-1.0)));
	nus.Set_initial_state(marray<double,1>({3},{0,1,0}),flavor);
	nus.EvolveState();
	for(int i=0; i<3; i++)
		std::cout << nus.EvalFlavor(i) << ' ';
	std::cout << std::endl;
	return 0;
}

This program takes an energy, assumed to be in GeV, as its single argument, and propagates a suitable beam of neutrinos through the full diameter of the Earth.
It could be generalized and made more useful in myriad ways, but we will use this simple version for brevity.
Let us assume that we save this file as earth_osc.cpp, in some new directory where we wish to compile it.
Next, we would copy the template Makefile to the same directory:

In the directory containing earth_osc.cpp:
cp ${NUSQUIDS_SOURCE_PATH}/resources/build_template/Makefile ./

Assuming that NUSQUIDS_SOURCE_PATH is the path where the nuSQuIDS source code was placed.
Then, we edit the copied Makefile to set the necessary variables.

First, we set PROGRAM to the name of our program, which will be earth_osc for this example:

PROGRAM:=earth_osc

Next, we specify the implementation files to be compiled. We have only one, earth_osc.cpp:

IMPLEMENTATION_FILES:=earth_osc.cpp

This is all that is required. It should now be sufficient to run make to compile the program, which we can then run.
Doing so might look something like this:

$ make
pkg-config nusquids squids --cflags > .nusquids_cxxflags
/usr/local/bin/clang++ -c -std=c++11 $(cat .nusquids_cxxflags) earth_osc.cpp -o earth_osc.o
pkg-config nusquids squids --libs > .nusquids_ldflags
/usr/local/bin/clang++ earth_osc.o $(cat .nusquids_ldflags) -o earth_osc
$./earth_osc 10
0.0835682 0.507911 0.408521

To clean up automatically generated files, a clean target is also provided which will erase them:

$ make clean
rm -rf earth_osc earth_osc.o .nusquids_cxxflags .nusquids_ldflags

More Advanced Programs

Your program need not have only a single implementation file.
For example, you might implement a new type of Body, and for neatness place it in its own header and implementation file:

/* NewBody.h */
#ifndef NEWBODY_H
#define NEWBODY_H
#include <nuSQuIDS/nuSQuIDS.h>

class NewBody : public nusquids::Body{
	NewBody(double density);
	//Declarations of other necessary functions and data types . . .
};
#endif //NEWBODY_H

/* NewBody.cpp */
#include "NewBody.h"

NewBody::NewBody(double density){ /* implementation. . . */ }

// Implementations of other functions. . .

Naturally, to use this new type of Body you would #include "NewBody.h" in your main implementation file. But how to ensure that it is properly compiled and dependencies are accounted for, etc.?
First, since you have a second implementation file, add it to IMPLEMENTATION_FILES:

IMPLEMENTATION_FILES:=earth_osc.cpp NewBody.cpp

Files in this variable are just separated by spaces.
Next, add your new header file to the HEADERS variable:

HEADERS:=NewBody.h

Like IMPLEMENTATION_FILES, this is just a space separated list, which can contain as many files as you need.

With these changes, running make should compile both implementation files and link both into the program executable.
If the header file is changed, both implementation files will be recompiled, etc.

Other Variables and Settings

The CXX_VERSION variable may be set if you want to compile your program with a different language standard. nuSQuIDS requires C++11, but should also work with C++14, C++17, C++20 and future versions.

The CXX_SUFFIX variable may be changed if you prefer to name your C++ implementation files with a different file extension, such as .cxx, .c++, or .C. Note that no dot should be included in the value of the variable, so if you name your files lie my_file.cxx, just set it to cxx.

CXXFLAGS can be set to include any additional compiler settings you want to use.
Common additions are the -g option for debug information, or -O2/-O3 optimization options.

LDFLAGS can be likewise set to add additional options to the linker; this is most commonly used to request linking against additional libraries besides nuSQuIDS.

Portability and Limitations

The template makefile has been written and tested to work for both GNU make and BSD make, despite their differences in dialect.
It also assumes the availability of some standard unix programs (the test program [, cat, echo, grep) and Bourne shell features, as well as the pkg-config tool.
Naturally, a C++ compiler is required, whose name is obtained from the CXX environment variable, and is assumed to be c++ if this is not set.

The rules of the Makefile are written assuming that the compiler has a command line interface approximately like GNU g++.
As such, they have been tested with g++ and clang++.
Broadly, they should also work with other Unix compilers, such as the Intel compiler (icc) and the Nvidia HPC C++ compiler (nvc++), however these have not been tested and may require additional, non-default flag settings.

Due to a general limitation of make, the template makefile will not work correctly if any file name contains whitespace, or the paths to the working directory for building the program, or the install locations of any libraries, etc. contain whitespace.

This simple build system does not encompass use of python, and as such will not build any bindings to expose custom code for use in python.
In future, it may be extended, or a separate template may be provided to handle this more complex task.

nuSQUIDSDecay

A specialization of the nuSQUIDS class that includes neutrino decay.
For physics details, see Appendix A of arXiv:1711.05921

The class is defined completely in its header file, include/nusquids_decay.h
The examples reside in the examples/ directory.
//———————————-Dependencies————————————//

-The SQUIDS library (https://github.com/jsalvado/SQuIDS)
-The nuSQUIDS library (https://github.com/arguelles/nuSQuIDS)
-The HDF5 library (https://support.hdfgroup.org/HDF5/)
(note: some packaged versions of HDF5 do not include support for the
c++ API. The API is detailed at https://support.hdfgroup.org/HDF5/doc/cpplus_RM/
and compiling the library from source w/ proper c++ options should
resolve any HDF5/c++ issues should they arise).
-The Doxygen documentation generator (only for compiling docs),
see http://www.stack.nl/~dimitri/doxygen/ for details.

-Note: Library paths are managed with the pkg-config utility. See the Makefile for
its usage. Depending on the OS and the method used to install the libraries
listed above, you may need to write pkg-config files which point to these
libraries. See https://people.freedesktop.org/~dbn/pkg-config-guide.html
for details.

//——————————-Compilation———————————-//

Simply running “make” should compile both the coupling and partial rate examples.
These examples are explained in their respective source files, and should, together
with the class documentation, provide a workable understanding of how to use
the nuSQUIDSDecay class. To compile the documentation, run “doxygen Doxyfile”.
Use your favorite browser to open doc/html/index.html. The class documentation
is then under Namespaces/nusquids/nuSQUIDSDecay.

//——————————–Execution———————————–//

To run the examples, change directories to examples/ and execute the examples
there. This is done to satisfy the relative paths pointing to the fluxes/
and output/ directories. Both examples will read input fluxes from the fluxes/
directory, and write both initial and final fluxes from kaon and pion channels
to text files in output/.
The format of each line of the output file is:
cos(zenith angle) neutrino energy(eV) nu_mu flux nu_mu_bar flux

More flux flavors can be output simply by modifying the WriteFlux() function
in the example source files appropriately.

//—————————————————————————-//

For more information please email:

Alexander (Zander) Moss (zander@caltech.edu)
Marjon Moulai (marjon@mit.edu)
Carlos Arguelles (caad@mit.edu)
Janet Conrad (conrad@mit.edu)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

